NILab
Premise

Center for Information Technology
Fondazione Bruno Kessler
www.fbk.eu

Center for Mind/Brain Sciences
Università degli Studi di Trento
www.cimec.unitn.it
Outline

Computational Methods
Machine learning for data analysis

Neuroscience Laboratories
Heterogeneous sources of data

Software Tools
Open source projects based on Python
Outline

Software Tools

PyMVPA
Multivariate Pattern Analysis in Python
pymvpa.org

DiPy
Diffusion Imaging in Python
nipy.sourceforge.net/dipy
Neuroscience Labs

- functional MRI
- diffusion MRI
- EEG
- MEG

4T Bruker MedSpec MRI

Elekta Neuromag 306 Channels
ML Methods

- **Brain Decoding**
 Prediction of mental state

- **Brain Mapping**
 Task-related brain segmentation

- **Brain Connectivity**
 Analysis of structural connectivity
Non invasive technologies, like fMRI and MEG, allow to record the brain activity when a subject is accomplishing a cognitive task. The challenge is to interpret the brain recordings in order to infer the corresponding mental task.
Supervised Learning of Mental State

Gaussian Processes and Recurrent Neural Networks to decode non-conventional protocol of stimuli without any assumption on haemodynamic model.

KEYWORD
Gaussian Processes Regression, Recurrent Neural Networks

AWARD
1st Prize PBAIC-2006

DATASET

PARTNER
CIMeC

REFERENCE
Real-time fMRI Brain Decoding

The challenge is twofold: on one hand to compute just in time the mental state, on the other hand to deal with dataset shift which occurs between different fMRI recordings or between different subjects.

KEYWORD
Dataset Shift, Domain Adaptation, Functional Alignment

DATASET
[fMRI] Neuroeconomics Trust Game, 2010

PARTNER
CNRS, Lyon, France

REFERENCE
(ongoing work)
Tensorial Kernel for Brain Data

A kernel-based model designed to deal with tensorial encoding of multidimensional brain data for increasing learning performance when few data are available.

KEYWORD
Multilinear Ranks, Tensorial Kernel, Cumulants Kernel

DATASET
[MEG] ICANN Contest, 2011
[MEG] Biomag Contest, 2010

PARTNER
Katholieke Universiteit Leuven

REFERENCE
(ongoing work)
Unbiased Error Estimate
To prevent circular analysis in computing error estimate which might invalidate the conclusion of the neuroscientific investigation.

KEYWORD
Error Estimation, Double Dipping

DATASET
[MEG] Biomag Contest, 2010

PARTNER
CiMeC

REFERENCE
Hypothesis Testing

Is there information about the stimulus given to the subject within brain data?

DATASET

-[fMRI] Knops et al., Science 324 (5934), 2009
-[MEG] Biomag Contest, 2010

PARTNER

Thomson Reuters, USA
GfK, Warszawa, Poland

REFERENCE

E. Olivetti, S. Veeramachaneni, E. Nowakowska, Bayesian Hypothesis Testing for Brain Decoding, Pattern Recognition. 2010. (under review)
Brain Mapping

A protocol of stimuli induces a mental state in a subject. The challenge is to identify the region of the brain related to the mental process.
Random Subsampling Methods

Dealing with the curse of dimensionality by reducing the ratio between features and examples. To perform the relevance voxel assessment by preserving the redundancy.

KEYWORDS
Feature Selection, Ensemble Methods

DATASET
[fMRI] MVPA Testbed recorded at CIMeC 2009.

PARTNER
CIMeC

REFERENCE
D. Sona, P. Avesani, Multivariate Brain Mapping by Random Subsampling, ICPR. 2010
Supervised Learning Haemodynamic Response
Given the protocol of stimuli to predict the BOLD response of a given voxel. Working hypothesis: relevant voxels should allow for accurate BOLD prediction.

KEYWORDS
Liquid State Machine, Reservoir Computing

DATASET
[fMRI] MVPA Testbed recorded at CIMeC 2009.

PARTNER
University of Haifa

REFERENCE
Longitudinal Studies

To detect the portion of the brain affected by a rehabilitation therapy interleaving two subsequent sessions of fMRI recordings. Untangling neuroplasticity recovery from systemic variance of data sampling.

DATASET
[fMRI] Language Rehabilitation 2010

PARTNER
CERIN

REFERENCE
Brain Connectivity

Recent diffusion MRI techniques allow to reconstruct the structure of nearly 300,000 fibers in the brain. Specific bundles of reconstructed fibers can be identified for their role in connecting related brain areas.
Joint Functional-Structural Data Analysis
To investigate brain connectivity by combining functional and diffusion MRI data. Setting an homogeneous pairwise encoding both for voxel timecourses and tractography streamlines.

DATASET
[fMRI, DSI] Pittsburgh Brain Connectivity Contest 2009

PARTNER
CIMeC

REFERENCE
E. Olivetti, Sriharsha Veeramachaneni, Susanne Greiner, Paolo Avesani, Brain Connectivity Analysis by Reduction to Pair Classification, Cognitive Information Processing. 2010.
Supervised Fiber Tract Segmentation

Learning from a tract of a source subject manually annotated by a human expert to segment the same kind of tract from a subsample of tractography of a target subject.

AWARD
Honorable Mention PBC-2009

DATASET
[DSI] Pittsburgh Brain Connectivity Contest 2009

PARTNER
University of Cambridge

REFERENCE